# Disproportionation reactions of (methoxy/hydroxy)diorganotin(IV) methanesulfonates with carboxylic acids Synthesis and structure of new diorganotin(IV) carboxylates 

Ravi Shankar ${ }^{\text {a,* }}$, Mukesh Kumar ${ }^{\text {a }}$, Suraj P. Narula ${ }^{\text {b }}$, Raj K. Chadha ${ }^{\text {c }}$<br>${ }^{a}$ Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India<br>${ }^{\mathrm{b}}$ Department of Chemistry, Punjab University, Chandigarh 160014, India<br>${ }^{\text {c }}$ The Scripps Research Institute, BCC-159, 10555N Torrey Pines Road, La Jolla, CA 92037, USA

Received 2 December 2002; received in revised form 13 January 2003; accepted 14 January 2003


#### Abstract

Disproportionation reactions between equimolar quantities of $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{X}) \mathrm{OSO}_{2} \mathrm{Me}[\mathrm{X}=\mathrm{OMe}$ or OH$]$ and ethylmalonic/maleic acid in acetonitrile under mild conditions afford new diorganotin dicarboxylates, $\mathrm{R}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CR}^{\prime} \mathrm{COOH}\right)_{2}\left[\mathrm{R}^{\prime}=\mathrm{CHEt}, \mathrm{R}=n-\mathrm{Pr}(\mathbf{3 a}), n-\mathrm{Bu}\right.$ (3b); $\left.\mathrm{R}^{\prime}=\mathrm{CH}=\mathrm{CH}, \mathrm{R}=n-\mathrm{Pr}(\mathbf{3 c}), n-\mathrm{Bu}(\mathbf{3 d})\right]$ along with $\mathrm{R}_{2} \mathrm{Sn}\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{2}[\mathrm{R}=n-\operatorname{Pr}(\mathbf{4 a}), n-\mathrm{Bu}(\mathbf{4 b})]$. Similar reactions of the tin precursors with pyridine-2-carboxylic acid provide an access to novel trinuclear tin complexes, $\mathrm{R}_{6} \mathrm{Sn}_{3}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)_{3}\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{3}$ $[\mathrm{R}=n-\operatorname{Pr}(\mathbf{5 a}), n-\mathrm{Bu}(\mathbf{5 b})]$. These have been characterized by IR and multinuclear $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{119} \mathrm{Sn}\right) \mathrm{NMR}$ spectroscopies. The molecular structures of $\mathbf{3 b}, \mathbf{4 b}$ and $\mathbf{5 b}$ have been determined by X-ray crystallography. Compound $\mathbf{3 b}$ is monomeric with bicapped tetrahedron geometry by virtue of anisobidentate coordination of one carboxylate group of each ligand, while the other carboxylic acid group remains free. The polymeric structure of $\mathbf{4 b}$ features centrosymmetric eight-membered rings comprising bridging methanesulfonate groups and nearly perfect octahedral geometry around each tin atom. Compound $\mathbf{5 b}$ crystallizes as $\mathbf{5 b} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. $\mathrm{Et}_{2} \mathrm{O}$. Its molecular structure comprises of mixed ligand tin ester, $n-\mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right) \mathrm{OSO}_{2} \mathrm{Me}$ and its disproportionated products, $n-\mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)_{2}$ and $n-\mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{2}$ which are coordinatively associated by varying bonding modes of pyridine-2-carboxylate groups. A possible rationalization of these results are discussed in terms of the intermediacy of mixed ligand tin complexes, $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{L}) \mathrm{OSO}_{2} \mathrm{Me}(\mathrm{L}=$ carboxylate $)$ formed by the selective substitution of $\mathrm{Sn}-\mathrm{OMe}$ group or by the dehydration of $\mathrm{Sn}-\mathrm{OH}$ group in the tin precursors with the carboxylic acid.


(C) 2003 Elsevier Science B.V. All rights reserved.

Keywords: Disproportionation; Carboxylates; Diorganotin; Trinuclear tin

## 1. Introduction

Diorganotin esters derived from monofunctional carboxylic acids have been studied extensively owing to their multifarious applications such as PVC stabilizers, biocides and metal-based drugs [1]. The complex formation equilibria between diorganotin(IV) species

[^0]and carboxylic acids in aqueous solution have been investigated in order to understand their environmental fate and role in biological systems [2]. Tin carboxylates are commonly synthesized by classical azeotropic dehydration reaction between diorganotin oxide and the corresponding carboxylic acid [1a,3]. Davies et al. [4] have reported an alternate method, involving $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{OPr})_{2}$ as the starting precursors, for the synthesis of diorganotin carboxylates under mild conditions. These compounds reveal a wide structural diversity depending upon the steric bulk of the alkyl/aryl substituents and/or of ligands and their electronic effect [5].

By contrast, there are only a few systematic studies on analogous compounds derived from dioic acids [6-8]. Structurally authenticated examples in this family are limited and are polymeric in nature, e.g. $\left[\mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CR}-\right.\right.$ $\left.\left.\mathrm{CO}_{2}\right)\right]_{x}(\mathrm{R}=\mathrm{alkyl} /$ aryl $)[6 \mathrm{~b}, 6 \mathrm{c}]$ and $\left[\mathrm{R}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right.$. $\left.\mathrm{H}_{2} \mathrm{O}\right]_{x}[7]$. Diorganostannates derived from 2,6-pyridine dicarboxylic acid are also known [8].

We have been interested in the development of alternate synthetic methods for different structural variety of tin carboxylates which are otherwise inaccessible by the classical dehydration approach. In this context, a detailed study of the reactivity of mixed ligand diorganotin complexes such as $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{X}) \mathrm{OSO}_{2} \mathrm{Me}$ $[\mathrm{R}=n-\mathrm{Pr}$ or $n-\mathrm{Bu} ; \mathbf{X}=\mathrm{OMe}$ (1), $\mathrm{OH}(\mathbf{2})][9]$ towards a number of carboxylic acids has been undertaken. The precursors $\mathbf{1}$ are chosen with a premise that the selective ability of reactive $\mathrm{Sn}-\mathrm{OMe} / \mathrm{Sn}-\mathrm{OSO}_{2} \mathrm{Me}$ groups to undergo substitution reactions may provide an access to a range of mixed ligand tin carboxylates. Similarly, the tin precursors 2 provide a case study to understand the competitive pathway involving substitution behavior of $\mathrm{Sn}-\mathrm{OSO}_{2} \mathrm{Me}$ group vis-à-vis dehydration reaction of $\mathrm{Sn}-\mathrm{OH}$ group towards the carboxylic acids. The results obtained from these studies are reported herein.

## 2. Results and discussion

### 2.1. Synthesis

As evident from Scheme 1, the reactions between equimolar quantities of $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{X}) \mathrm{OSO}_{2} \mathrm{Me}[\mathrm{X}=\mathrm{OMe}(\mathbf{1})$ or OH (2)] with ethylmalonic/maleic acid in acetonitrile gave the corresponding diorganotin dicarboxylates ( $\mathbf{3 a -}$ 3d) and diorganotin bis(methanesulfonates) ( $\mathbf{4 a}$ and $\mathbf{4 b}$ ) [9] under mild conditions (RT, 8-10 h). On the other hand, analogous reactions of the tin precursors with pyridine-2-carboxylic acid led exclusively to the trinuclear tin compounds ( $\mathbf{5 a}$ and $\mathbf{5 b}$ ). The isolation of these complexes can be rationalized by assuming that the above reactions proceed by the formation of
unstable mixed ligand tin complexes, $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{L}) \mathrm{OSO}_{2} \mathrm{Me}$ ( $\mathrm{L}=$ carboxylate group), formed via selective substitution of the $\mathrm{Sn}-\mathrm{OMe}$ bond (for 1) or azeotropic dehydration of $\mathrm{Sn}-\mathrm{OH}$ group (for 2) with carboxylic acid. The resulting mixed ligand tin intermediate undergoes disproportionation to afford the new diorganotin esters. Strong evidence in support of this proposition comes from the crystal structure of the trinuclear tin compound $\mathbf{5 b}$.

### 2.2. Characterization

All compounds are white crystalline solids and are soluble in common organic solvents such as $\mathrm{CHCl}_{3}$, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ and DMSO, etc. IR spectra ( KBr ) of 3a and 3b exhibit two strong bands at $1600-1605$ and $1710-1715 \mathrm{~cm}^{-1}$ due to $v \mathrm{CO}_{2}$ mode of coordinated and free carboxylic groups, respectively, while the corresponding absorptions for 3c and 3d appear at $1500-$ 1505 and $1580-1590 \mathrm{~cm}^{-1}$. These absorptions remain practically unaltered in dichloromethane solution. A broad band at $\sim 3100 \mathrm{~cm}^{-1}$ is characteristic of $v \mathrm{OH}$ mode in each case. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{3 a}-\mathbf{3 d}$ are quite straightforward and manifest 1:2 integrated ratio of $\mathrm{R}_{2} \mathrm{Sn}$ and CHEt or $\mathrm{CH}=\mathrm{CH}$ groups. The observed ${ }^{119 / 117} \mathrm{Sn}$ satellites in ${ }^{13} \mathrm{C}$-NMR spectra provide ${ }^{n} J\left({ }^{13} \mathrm{C}-{ }^{119 / 117} \mathrm{Sn}\right)$ coupling values ( ${ }^{1} J=540-570 \mathrm{~Hz}$ ). The carbonyl carbons appear as single resonance at $\delta=$ 165-175 ppm, which suggests a rapid intermolecular/ intramolecular carboxylate exchange in solution. These results are consistent with those of analogous tincarboxylates reported earlier [6b]. In 3b, the accidental degeneracy of ${ }^{13} \mathrm{C}$ chemical shifts of $\mathrm{SnCH}_{2}$ and $\mathrm{CH}_{2}(\mathrm{Et})$ carbons is substantiated by $\left({ }^{1} \mathrm{H}^{-13} \mathrm{C}\right)$ HSQC NMR correlation spectrum which reveals cross-peak at $\delta=25.5 /(1.65-1.59)$. A close similarity of the ${ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{119 / 117} \mathrm{Sn}\right)$ as well as ${ }^{119} \mathrm{Sn}$-NMR chemical shifts $\delta(-151$ to -140$)$ for $\mathbf{3 a}-\mathbf{3 d}$ suggest that these compounds adopt similar structural features in solution state. The IR spectra of $\mathbf{5 a}$ and $\mathbf{5 b}$ exhibit bands at 1650-1685 and $1294-1298 \mathrm{~cm}^{-1}$ due to coordinated


$$
\begin{aligned}
& \mathrm{R}^{\prime}=\mathrm{CH}(\mathrm{Et}) \mathrm{COOH} ; \mathrm{R}=\mathrm{n}-\operatorname{Pr}(\mathbf{3 a}), \mathrm{n}-\mathrm{Bu}(\mathbf{3 b}) \\
& \mathrm{R}^{\prime}=\mathrm{CH}=\mathrm{CHCOOH} ; \mathrm{n}-\operatorname{Pr}(\mathbf{3} \mathbf{c}), \mathrm{n}-\mathrm{Bu}(\mathbf{3 d}) \\
& \mathrm{R}=\mathrm{n}-\mathrm{Pr}(\mathbf{4 a}), \mathrm{n}-\mathrm{Bu}(\mathbf{4 b}) \\
& \mathrm{R}^{\prime}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-2 ; \mathrm{R}=\mathrm{n}-\operatorname{Pr}(\mathbf{5 a}), \mathrm{n}-\mathrm{Bu}(\mathbf{5 b})
\end{aligned}
$$

$v_{\mathrm{a}} \mathrm{CO}_{2}$ and $v_{\mathrm{s}} \mathrm{CO}_{2}$ modes, respectively. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of each compound identifies $\mathrm{Pr}_{2} \mathrm{Sn} / \mathrm{Bu}_{2} \mathrm{Sn}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$ 2 and SMe groups in 1:1:1 integrated ratio. The ${ }^{119} \mathrm{Sn}-$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{5 a}$ and $\mathbf{5 b}$ show a close resemblance with the chemical shift values at $\delta=-216$, -346 and -418 (for 5a) and $-210,-346,-421$ (for 5b). However, these signals are broad and span over a large chemical shift range, thus suggesting structural changes in solution [10]. The identity of $\mathbf{5 a}$ and $\mathbf{5 b}$ is further established from the FAB mass spectra. Although $\mathrm{M}^{+}$ion corresponding to the trinuclear tin assembly is not discernable, structurally important ions such as $\left[\mathrm{M}-2 \mathrm{OSO}_{2} \mathrm{Me}-2 \mathrm{H}\right]^{+}$, $\quad[\mathrm{M}-$ $\left.\mathrm{R}_{2} \mathrm{Sn}\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{3}-2 \mathrm{H}\right]^{+},\left[\mathrm{R}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)\right]^{+}$, and $\left[\mathrm{RSn}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)_{2}\right]^{+}$are evident from the spectra. The relevant data are summarized in Section 3.

## 2.3. $X$-ray crystal structures

The single crystals suitable for X-ray structure analysis were obtained upon cooling the solution of the compounds in dichloromethane (for 3b), methanol/ acetonitrile (70:30) (for 4b) and dichloromethane/diethyl ether (80:20) (for 5b). The molecular structures along with atomic labeling scheme are shown in Figs. 1-3, respectively. The relevant crystal data are given in Table 1 , while selected bond lengths and angles are listed in Tables 2-4. The molecule 3b adopts a centrosymmetric monomeric structure in which one carboxylate unit of each ligand is bonded to the tin atom in anisobidentate fashion, while the other carboxylic group remains free. The structure is best described as bicapped tetrahedron. The tetrahedron comprises of two $\mathrm{Sn}-\mathrm{C}$ and two covalent $\mathrm{Sn}-\mathrm{O}$ bonds $[\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{O}(2) / \mathrm{C}(6) \# 1-$


Fig. 1. The ortep view of $\mathbf{3 b}$ with the atomic numbering scheme. Thermal ellipsoids are drawn at $30 \%$ probability level.
$\mathrm{Sn}(1)-\mathrm{O}(2) \# 1, \quad 105.3(6)^{\circ} ; \quad \mathrm{C}(6) \# 1-\mathrm{Sn}(1)-\mathrm{O}(2) / \mathrm{C}(6)-$ $\left.\operatorname{Sn}(1)-\mathrm{O}(2) \# 1,107.3(6)^{\circ}\right]$, while $\mathrm{O}(1)$ and $\mathrm{O}(1) \# 1$ form the caps of the bicapped tetrahedron $[\mathrm{O}(1) \# 1-\mathrm{Sn}(1)-$ $\left.\mathrm{O}(1), 173.5(7)^{\circ}\right]$. The effect of capping atoms is reflected in the narrow bond angles in $\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{C}(6) \# 1$ $138.0(13)^{\circ}$ and $\mathrm{O}(2) \# 1-\mathrm{Sn}(1)-\mathrm{O}(2) 77.1(6)^{\circ}$. The $\mathrm{SnO}_{4}$ coordination sphere is planer $\left(360 \pm 1^{\circ}\right)$. The covalent $\mathrm{Sn}(1)-\mathrm{O}(2) / \mathrm{Sn}(1)-\mathrm{O}(2) \# 1$ as well as coordinated $\mathrm{Sn}(1)-$ $\mathrm{O}(1) / \mathrm{Sn}(1)-\mathrm{O}(1) \# 1$ bond distances are $2.121(11)$ and $2.514(11) \AA$, respectively, and compare well with those of analogous tin carboxylates derived from monocarboxylic acids [11]. The presence of weak intermolecular ( $\mathrm{O} . \ldots \mathrm{HO}$ ) hydrogen bonding ( $2.622 \AA$ ) is also manifested in the molecule. The crystal structure represents the first example of monomeric diorganotin dicarboxylate derived from dioic acid.

The molecule $\mathbf{4 b}$ adopts polymeric structure with centrosymmetric eight-membered rings comprising two bridging methanesulfonate groups between the two consecutive tin atoms. The linear chains propagate along $\bar{a}$ axis $(100)$ but have no interaction with each other. The angles $\mathrm{C}(1) \# 1-\mathrm{Sn}(1)-\mathrm{C}(1) \quad 180.0(2)$, $\mathrm{O}(1) \# 1-\mathrm{Sn}(1)-\mathrm{O}(1) \quad 180.0(2)$ and $\mathrm{O}(2) \# 2-\mathrm{Sn}(1)-$ $\mathrm{O}(2) \# 3180.0(4)^{\circ}$ propose nearly perfect octahedral geometry around each tin atom in this molecule. The cis angles around tin $(\mathrm{C}-\mathrm{Sn}-\mathrm{O}$ and $\mathrm{O}-\mathrm{Sn}-\mathrm{O})$ vary between 86 and $94^{\circ}$ (Table 3). The $\mathrm{Sn}-\mathrm{O}$ (methanesulfonate) bond distances $\operatorname{Sn}(1)-\mathrm{O}(1), \operatorname{Sn}(1)-\mathrm{O}(1) \# 1$; $2.272(11) ~ \AA$ and $\operatorname{Sn}(1)-O(2) \# 2, \quad \operatorname{Sn}(1)-O(2) \# 3$; 2.254(10) $\AA$ are longer than the normal covalent $\mathrm{Sn}-\mathrm{O}$ (1.9-2.1 Å) bond length [12] and reflect some degree of ionic character. However, these are comparable with the corresponding $\mathrm{Sn}-\mathrm{O}$ bond distances reported earlier for mixed ligand diorganotin methanesulfonates, $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{X}) \mathrm{OSO}_{2} \mathrm{Me}(\mathrm{X}=\mathrm{OH}, \beta$-dik) [9] as well as dimethyltin bisfluorosulfonate [13].

The molecular structure of $\mathbf{5 b} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Et}_{2} \mathrm{O}$ reveals a self-assembly of the mixed ligand tin ester, $n-\mathrm{Bu}_{2} \mathrm{~S}$ $\mathrm{n}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right) \mathrm{OSO}_{2} \mathrm{Me}$ and its disproportionated products, i.e. $n-\mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)_{2}$ and $n-\mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{O}-$ $\left.\mathrm{SO}_{2} \mathrm{Me}\right)_{2}$ which are coordinatively associated by varying bonding modes of pyridine-2-carboxylate group. The $\mathrm{O}(1)$ and $\mathrm{N}(1)$ atoms of the ligand is bonded to $\mathrm{Sn}(1)$ in a chelating fashion $[\operatorname{Sn}(1)-\mathrm{O}(1)=2.109(6), \quad \mathrm{Sn}(1)-$ $\mathrm{N}(1)=2.305(7) \AA$ ], while the other carboxylic oxygen, $\mathrm{O}(2)$ remains free. Such bonding behavior is previously observed in $\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)_{2}$ [14]. The tridentate coordination mode of $\mathrm{O}(7), \mathrm{N}(2)$ and $\mathrm{O}(6)$ with $\mathrm{Sn}(2)$ atom is in agreement with that found in $\mathrm{Me}_{2} \mathrm{~S}$ $\mathrm{n}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)_{2}$ [15]. However, the bonding situation involving intermolecular coordinative association of $\mathrm{N}(3)$ and $\mathrm{O}(10)$ to $\mathrm{Sn}(3)$ atom $[\mathrm{Sn}(3)-\mathrm{N}(3) 2.329(7)$; $\mathrm{Sn}(3)-\mathrm{O}(10), 2.214(6) \AA$ is unprecedented and likely to arise due to the adventitious entry of water molecule in the $\operatorname{Sn}(2)$ coordination sphere. This unusual bonding situation is reflected in narrow $\mathrm{C}(35)-\mathrm{O}(9)-\mathrm{Sn}(2)$ angle


Fig. 2. The ortep view of $\mathbf{4 b}$ with the atomic numbering scheme. Thermal ellipsoids are drawn at $30 \%$ probability level.
[113.2(5) ${ }^{\circ}$ ] and a long $\operatorname{Sn}(2)-\mathrm{O}(9)$ bond distance $2.374(6) \AA$ as compared with other analogous metrical parameters in the molecule $[\mathrm{C}(21)-\mathrm{O}(7)-\mathrm{Sn}(2)=$ $120.3(5)^{\circ}, \mathrm{C}(6)-\mathrm{O}(1)-\mathrm{Sn}(1)=121.1(5)^{\circ} ; \mathrm{Sn}(1)-\mathrm{O}(1)=$ $2.109(6) \AA, \operatorname{Sn}(2)-O(7)=2.179(6) \AA]$. The average covalent and coordinate $\mathrm{Sn}-\mathrm{O}$ bond distances are comparable with those of previously reported for diorganotin dicarboxylates derived from pyridine-2carboxylic acid $[14,15]$. The average $\mathrm{Sn}-\mathrm{O}$ (methanesulfonate) bond distance ( $2.311 \AA$ ) is relatively large and suggests some degree of ionic character [9].

In summary, isolation of new diorganotin carboxylates such as $\mathbf{3 a} \mathbf{- 3 d}$ and $\mathbf{5 a}$ and $\mathbf{5 b}$ is achieved from chemoselective reactivity of $\mathrm{Sn}-\mathrm{OMe} / \mathrm{Sn}-\mathrm{OH}$ groups in the mixed ligand tin precursors towards the carboxylic acids. The structure of $\mathbf{5 b} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Et}_{2} \mathrm{O}$ represents the first crystallographic signature of the disproportionation phenomena [16], wherein the mixed ligand tin intermediate, $n-\mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right) \mathrm{OSO}_{2} \mathrm{Me}$ and its disproportionated products, i.e. $n-\mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)_{2}$
and $n-\mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{2}$ form a self-assembly by the coordinative association of pyridine-2-carboxylate groups.

## 3. Experimental

All reactions were conducted in an inert atmosphere of nitrogen. Solvents were dried using standard techniques (acetonitrile, dichloromethane and $n$-hexane over $\mathrm{P}_{2} \mathrm{O}_{5}$ ). Glassware was dried in an oven at $110-120{ }^{\circ} \mathrm{C}$ and further flame-dried under vacuum prior to use. (Methoxy/hydroxy)diorganotin(IV) methanesulfonates and $n-\operatorname{Pr}_{2} \mathrm{SnO}$ were prepared using literature methods [9,17]. ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ - and ${ }^{119} \mathrm{Sn}$-NMR spectra were recorded on BRUKER DPX-300 at $300,75.46$ and 111.88 MHz , respectively. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR chemical shifts are quoted with respect to the residual protons of the solvent, while ${ }^{119}$ Sn-NMR data are given using tetramethyltin as internal standard. The IR spectra were


Fig. 3. The orter view of $\mathbf{5 b} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Et}_{2} \mathrm{O}$ with the atomic numbering scheme. Thermal ellipsoids are drawn at $30 \%$ probability level. Hydrogen atoms, lattice water and diethyl ether molecule are omitted for clarity.

Table 1
Summary for crystallographic data for compounds $\mathbf{3 b}, \mathbf{4 b}$ and $\mathbf{5 b} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Et}_{2} \mathrm{O}^{\mathrm{a}}$

|  | 3b | 4b | $\mathbf{5 b} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Et}_{2} \mathrm{O}$ |
| :---: | :---: | :---: | :---: |
| Empirical formula | $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{Sn}$ | $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{SSn}_{1 / 2}$ | $\mathrm{C}_{49} \mathrm{H}_{87} \mathrm{~N}_{3} \mathrm{O}_{18} \mathrm{~S}_{3} \mathrm{Sn}_{3}$ |
| Formula weight | 493.11 | 211.55 | 1458.47 |
| $T\left({ }^{\circ} \mathrm{C}\right)$ | 23(2) | -100 | -100 |
| $\lambda(\AA)$ | 1.54178 | 0.71069 | 0.71073 |
| Crystal system | monoclinic | triclinic | monoclinic |
| Space group | $C_{2} / c$ (no. $15, \mathrm{C}_{2 \mathrm{~h}}^{6}$ ) | P1 (no. 2, $\mathrm{C}_{\mathrm{i}}^{1}$ ) | $P 2{ }_{1} / \mathrm{c}$ ( no. 14, $\mathrm{C}_{2 \mathrm{~h}}^{5}$ ) |
| $a(\AA)$ | 22.130 (4) | 5.321(2) | 20.5774(16) |
| $b(\AA)$ | 5.0110(10) | 8.762(3) | 17.4931(14) |
| $c(\AA)$ | 21.535(4) | 10.792(3) | 18.9046(15) |
| $\alpha\left({ }^{\circ}\right)$ | 90 | 64.30(2) | 90 |
| $\beta\left({ }^{\circ}\right)$ | 102.74(3) | 73.308(13) | 103.790(2) |
| $\gamma\left({ }^{\circ}\right)$ | 90 | 74.432(11) | 90 |
| $V\left(\AA^{3}\right)$ | 2329.3(8) | 428.2(2) | 6608.8(9) |
| $Z$ | 4 | 2 | 4 |
| $\rho_{\text {calcd }}\left(\mathrm{mg} \mathrm{m}^{-3}\right)$ | 1.406 | 1.641 | 1.466 |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 9.045 | 1.751 | 1.282 |
| Final $R$ Indices [ $I>2 \sigma(I)$ ] | $R 1=0.0775, w R 2=0.2057$ | $R 1=0.0829, w R 2=0.2007$ | $R 1=0.0560, w R 2=0.12$ |
| $R$ indices (all data) | $R 1=0.1195, w R 2=0.2431$ | $R 1=0.1081, w R 2=0.2178$ | $R 1=0.1073, w R 2=0.1423$ |

${ }^{\text {a }}$ For 3b, 4b and $\mathbf{5 b} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Et}_{2} \mathrm{O}: R 1=\left(\Sigma\| \| F_{0}\|-\| F_{\mathrm{c}}\| \| / \Sigma\left\|F_{0}\right\|\right), w R 2=\Sigma w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w\left[\left(F_{0}^{2}\right)^{2}\right]^{1 / 2}, s=\left[\Sigma w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2} /(n-p)\right]^{1 / 2}$.

Table 2
Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\mathbf{3} \mathbf{b}^{\text {a }}$

| Bond lengths |  |  |  |
| :--- | :--- | :--- | ---: |
| $\mathrm{Sn}(1)-\mathrm{C}(6)$ | $2.06(2)$ | $\mathrm{Sn}(1)-\mathrm{C}(6) \# 1$ | $2.06(2)$ |
| $\mathrm{Sn}(1)-\mathrm{O}(2) \# 1$ | $2.121(11)$ | $\mathrm{Sn}(1)-\mathrm{O}(2)$ | $2.121(11)$ |
| $\mathrm{Sn}(1)-\mathrm{O}(1) \# 1$ | $2.514(11)$ | $\mathrm{Sn}(1)-\mathrm{O}(1)$ | $2.514(11)$ |
| $\mathrm{Sn}(1)-\mathrm{C}(1) \# 1$ | $2.66(2)$ | $\mathrm{Sn}(1)-\mathrm{C}(1)$ | $2.66(2)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)$ | $1.28(2)$ | $\mathrm{O}(2)-\mathrm{C}(1)$ | $1.21(2)$ |
| $\mathrm{O}(3)-\mathrm{C}(3)$ | $1.26(2)$ | $\mathrm{O}(4)-\mathrm{C}(3)$ | $1.25(2)$ |
| Bond angles |  |  |  |
| $\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{C}(6) \# 1$ | $138.0(13)$ | $\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{O}(2) \# 1$ | $107.3(6)$ |
| $\mathrm{C}(6) \# 1-\mathrm{Sn}(1)-\mathrm{O}(2) \# 1$ | $105.3(6)$ | $\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{O}(2)$ | $105.3(6)$ |
| $\mathrm{C}(6) \# 1-\mathrm{Sn}(1)-\mathrm{O}(2)$ | $107.3(6)$ | $\mathrm{O}(2) \# 1-\mathrm{Sn}(1)-\mathrm{O}(2)$ | $77.1(6)$ |
| $\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{O}(1) \# 1$ | $85.7(5)$ | $\mathrm{C}(6) \# 1-\mathrm{Sn}(1)-\mathrm{O}(1) \# 1$ | $91.9(5)$ |
| $\mathrm{O}(2) \# 1-\mathrm{Sn}(1)-\mathrm{O}(1) \# 1$ | $54.9(4)$ | $\mathrm{O}(2)-\mathrm{Sn}(1)-\mathrm{O}(1) \# 1$ | $131.6(4)$ |
| $\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{O}(1)$ | $91.9(5)$ | $\mathrm{C}(6) \# 1-\mathrm{Sn}(1)-\mathrm{O}(1)$ | $85.7(5)$ |
| $\mathrm{O}(2) \# 1-\mathrm{Sn}(1)-\mathrm{O}(1)$ | $131.6(4)$ | $\mathrm{O}(2)-\mathrm{Sn}(1)-\mathrm{O}(1)$ | $54.9(4)$ |
| $\mathrm{O}(1) \# 1-\mathrm{Sn}(1)-\mathrm{O}(1)$ | $173.5(7)$ |  |  |

${ }^{\text {a }}$ Symmetry transformations used to generate equivalent atoms: \#1 $-x, y,-z+1 / 2$.
recorded on Nicolet protégé 460 E.S.P. spectrophotometer using KBr optics. FAB mass spectra were recorded on a VG analytical 70-S and JEOL SX 102/ DA-6000 spectrometer. Elemental analysis (C, H and N) was performed on a Perkin-Elmer model 2400 CHN elemental analyzer. Sulfur and tin were estimated by gravimetric methods [18].

### 3.1. Reactions of (methoxy)diorganotin methanesulfonate with ethylmalonic/maleic acid

To a stirred solution of $n-\mathrm{Pr}_{2} \mathrm{Sn}(\mathrm{OMe}) \mathrm{OSO}_{2} \mathrm{Me}(0.44$ $\mathrm{g}, 1.34 \mathrm{mmol}) / n-\mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{OMe}) \mathrm{OSO}_{2} \mathrm{Me}(0.56 \mathrm{~g}, 1.55$

Table 3
Selected bond lengths ( $\AA$ ) and angles $\left({ }^{\circ}\right)$ for $\mathbf{4} \mathbf{b}^{\text {a }}$

| Bond lengths |  |  |  |
| :--- | ---: | :--- | ---: |
| $\mathrm{Sn}(1)-\mathrm{C}(1) \# 1$ | $2.10(2)$ | $\mathrm{Sn}(1)-\mathrm{C}(1)$ | $2.10(2)$ |
| $\mathrm{Sn}(1)-\mathrm{O}(2) \# 2$ | $2.254(10)$ | $\mathrm{Sn}(1)-\mathrm{O}(2) \# 3$ | $2.254(10)$ |
| $\mathrm{Sn}(1)-\mathrm{O}(1) \# 1$ | $2.272(11)$ | $\mathrm{Sn}(1)-\mathrm{O}(1)$ | $2.272(11)$ |
| $\mathrm{S}(2)-\mathrm{O}(3)$ | $1.436(12)$ | $\mathrm{S}(2)-\mathrm{O}(1)$ | $1.477(11)$ |
| $\mathrm{S}(2)-\mathrm{O}(2)$ | $1.490(11)$ | $\mathrm{S}(2)-\mathrm{C}(5)$ | $1.77(2)$ |
| Bond angles |  |  |  |
| $\mathrm{C}(1) \# 1-\mathrm{Sn}(1)-\mathrm{C}(1)$ | $180.0(2)$ | $\mathrm{C}(1) \# 1-\mathrm{Sn}(1)-\mathrm{O}(2) \# 2$ | $93.8(5)$ |
| $\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{O}(2) \# 2$ | $86.2(5)$ | $\mathrm{C}(1) \# 1-\mathrm{Sn}(1)-\mathrm{O}(2) \# 3$ | $86.2(5)$ |
| $\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{O}(2) \# 3$ | $93.8(5)$ | $\mathrm{O}(2) \# 2-\mathrm{Sn}(1)-\mathrm{O}(2) \# 3$ | $180.0(4)$ |
| $\mathrm{C}(1) \# 1-\mathrm{Sn}(1)-\mathrm{O}(1) \# 1$ | $87.8(5)$ | $\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{O}(1) \# 1$ | $92.2(5)$ |
| $\mathrm{O}(2) \# 2-\mathrm{Sn}(1)-\mathrm{O}(1) \# 1$ | $85.9(4)$ | $\mathrm{O}(2) \# 3-\mathrm{Sn}(1)-\mathrm{O}(1) \# 1$ | $94.1(4)$ |
| $\mathrm{C}(1) \# 1-\mathrm{Sn}(1)-\mathrm{O}(1)$ | $92.2(5)$ | $\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{O}(1)$ | $87.8(5)$ |
| $\mathrm{O}(2) \# 2-\mathrm{Sn}(1)-\mathrm{O}(1)$ | $94.1(4)$ | $\mathrm{O}(2) \# 3-\mathrm{Sn}(1)-\mathrm{O}(1)$ | $85.9(4)$ |
| $\mathrm{O}(1) \# 1-\mathrm{Sn}(1)-\mathrm{O}(1)$ | $180.0(2)$ |  |  |

${ }^{\text {a }}$ Symmetry transformations used to generate equivalent atoms: \#1 $-x+1,-y+1,-z+1 ; \# 2-x,-y+1,-z+1 ; \# 3 x+1, y, z ; \# 4 x-$ $1, y, z$.
$\mathrm{mmol})$ in acetonitrile was added ethylmalonic acid ( 0.17 $\mathrm{g}, 1.34 \mathrm{mmol}) /(0.21 \mathrm{~g}, 1.55 \mathrm{mmol})$ or maleic acid $(0.15 \mathrm{~g}$, $1.34 \mathrm{mmol}) /(0.18 \mathrm{~g}, 1.55 \mathrm{mmol})$. The contents were stirred for $10-12 \mathrm{~h}$ at room temperature. A white precipitate formed in each case was filtered, dried and characterized as $n-\mathrm{Pr}_{2} \mathrm{Sn}\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{2}$ (4a) and $n-\mathrm{Bu}_{2} \mathrm{~S}-$ $\mathrm{n}\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{2}(\mathbf{4 b})$. The filtrates from the above reactions were concentrated and $n$-hexane was added. A white solid thus obtained in each case was filtered, washed with $n$-hexane and dried under vacuum. Recrystallization of the products from dichloromethane/toluene afforded the corresponding diorganotin dicarboxylates 3a-3d.

Table 4
Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\mathbf{5 b} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Et}_{2} \mathrm{O}$

| Bond lengths |  |  | $2.282(6)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{Sn}(1)-\mathrm{O}(1)$ | $2.109(6)$ | $\mathrm{Sn}(1)-\mathrm{O}(3)$ | $2.440(5)$ |
| $\mathrm{Sn}(1)-\mathrm{N}(1)$ | $2.305(7)$ | $\mathrm{Sn}(1)-\mathrm{O}(6)$ | $2.248(5)$ |
| $\mathrm{Sn}(2)-\mathrm{O}(7)$ | $2.179(6)$ | $\mathrm{Sn}(2)-\mathrm{O}(8)$ | $2.374(6)$ |
| $\mathrm{Sn}(2)-\mathrm{N}(2)$ | $2.296(7)$ | $\mathrm{Sn}(2)-\mathrm{O}(9)$ | $2.289(6)$ |
| $\mathrm{Sn}(3)-\mathrm{O}(10)$ | $2.214(6)$ | $\mathrm{Sn}(3)-\mathrm{O}(14)$ | $2.331(6)$ |
| $\mathrm{Sn}(3)-\mathrm{N}(3)$ | $2.329(7)$ | $\mathrm{Sn}(3)-\mathrm{O}(11)$ |  |
| Bond angles |  |  | $73.8(2)$ |
| $\mathrm{C}(8)-\mathrm{Sn}(1)-\mathrm{C}(12)$ | $158.5(4)$ | $\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{N}(1)$ | $82.4(2)$ |
| $\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}(3)$ | $79.8(2)$ | $\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{O}(6)$ | $159.9(4)$ |
| $\mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{O}(6)$ | $123.9(2)$ | $\mathrm{C}(26)-\mathrm{Sn}(2)-\mathrm{C}(22)$ | $80.0(2)$ |
| $\mathrm{O}(7)-\mathrm{Sn}(2)-\mathrm{N}(2)$ | $72.8(2)$ | $\mathrm{O}(7)-\mathrm{Sn}(2)-\mathrm{O}(8)$ | $78.8(2)$ |
| $\mathrm{O}(8)-\mathrm{Sn}(2)-\mathrm{O}(9)$ | $128.4(2)$ | $\mathrm{N}(2)-\mathrm{Sn}(2)-\mathrm{O}(9)$ | $78.1(2)$ |
| $\mathrm{C}(42)-\mathrm{Sn}(3)-\mathrm{C}(38)$ | $167.6(4)$ | $\mathrm{O}(14)-\mathrm{Sn}(3)-\mathrm{N}(3)$ | $81.5(2)$ |
| $\mathrm{O}(10)-\mathrm{Sn}(3)-\mathrm{N}(3)$ | $71.9(2)$ | $\mathrm{O}(10)-\mathrm{Sn}(3)-\mathrm{O}(11)$ | $121.1(5)$ |
| $\mathrm{O}(14)-\mathrm{Sn}(3)-\mathrm{O}(11)$ | $128.4(2)$ | $\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{Sn}(1)$ | $113.2(5)$ |
| $\mathrm{C}(21)-\mathrm{O}(7)-\mathrm{Sn}(2)$ | $120.3(5)$ | $\mathrm{C}(35)-\mathrm{O}(9)-\mathrm{Sn}(2)$ |  |

### 3.2. Reactions of (hydroxy)diorganotin methanesulfonate with ethylmalonic/maleic acid

The reactions between $n-\mathrm{Pr}_{2} \mathrm{Sn}(\mathrm{OH}) \mathrm{OSO}_{2} \mathrm{Me}$ (1.55 $\mathrm{mmol}) / n-\mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{OH}) \mathrm{OSO}_{2} \mathrm{Me}(1.60 \mathrm{mmol})$ and equivalent amount of the corresponding acid in acetonitrile were carried under similar conditions as described above. The compounds $\mathbf{4 a}$ and $\mathbf{4 b}$ were isolated as the precipitated products while $\mathbf{3 a}-\mathbf{3 d}$ were obtained from the filtrates.

### 3.2.1. $n-\operatorname{Pr}_{2} \operatorname{Sn}\left(\mathrm{O}_{2} \mathrm{CCH}(\mathrm{Et}) \mathrm{COOH}\right)_{2}(3 \boldsymbol{a})$

Yield: $(0.27 \mathrm{~g}, 44 \%)$, m.p. $120-123{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 1.01\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Et}+\mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right)$, 3.36 (t, $2 \mathrm{H}, \mathrm{CH}$ ), $1.75\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Et}+\mathrm{SnCH}_{2} \mathrm{CH}_{2}\right)$, $1.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{SnCH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ : $\delta \quad 11.9\left(\mathrm{CH}_{3}-\mathrm{Et}\right), \quad 53.1(\mathrm{CH}), 22.7\left(\mathrm{CH}_{2}-\mathrm{Et}\right), 28.6$ $\left(\mathrm{C}_{1}, \quad{ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{119 / 117} \mathrm{Sn}\right)=567 / 542 \quad \mathrm{~Hz}\right), \quad 18.1 \quad\left(\mathrm{C}_{2}\right.$ $\left.{ }^{2} J\left({ }^{13} \mathrm{C}-{ }^{119} \mathrm{Sn}\right)=33 \mathrm{~Hz}\right), 17.6\left(\mathrm{C}_{3},{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{119} \mathrm{Sn}\right)=95\right.$ $\mathrm{Hz}), 177.6(\mathrm{C}=\mathrm{O}) \mathrm{ppm} .{ }^{119} \mathrm{Sn}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-150.1$ ppm. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3100(v \mathrm{OH}), 1714,1601\left(v_{\mathrm{a}} \mathrm{CO}_{2}\right)$, $1290\left(v_{\mathrm{s}} \mathrm{CO}_{2}\right)$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{Sn}: \mathrm{C}, 41.02$; H, 5.98; Sn, 25.64. Found: C, 40.80; H, 5.76; Sn, 25.44\%.

### 3.2.2. $n-\mathrm{Bu}_{2} \operatorname{Sn}\left(\mathrm{O}_{2} \mathrm{CCH}(\mathrm{Et}) \mathrm{COOH}\right)_{2}(3 \boldsymbol{b})$

Yield: $(0.36 \mathrm{~g}, 47 \%)$, m.p. $130-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 0.94\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Et}\right), 3.29(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}), 1.61$ (m, $8 \mathrm{H}, \mathrm{SnCH}+\mathrm{CH}_{2}-\mathrm{Et}$ ), $1.91\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{SnCH}_{2} \mathrm{CH}_{2}\right.$ ), $1.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 0.96\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right)$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.9\left(\mathrm{CH}_{3}-\mathrm{Et}\right), 52.0$ $(C H), 25.5\left(\mathrm{CH}_{2}-\mathrm{Et}+\mathrm{C}_{1},{ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{119} \mathrm{Sn}\right)=549 \mathrm{~Hz}\right), 21.7$ $\left(\mathrm{C}_{2}\right), 25.2\left(\mathrm{C}_{3},{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{119} \mathrm{Sn}\right)=100 \mathrm{~Hz}\right), 12.4\left(\mathrm{C}_{4}\right), 176.1$ $(\mathrm{C}=\mathrm{O})$ ppm. ${ }^{119} \mathrm{Sn}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-144.5 \mathrm{ppm}$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3100(v \mathrm{OH}), 1712,1601\left(v_{\mathrm{a}} \mathrm{CO}_{2}\right), 1289$ $\left(v_{\mathrm{s}} \mathrm{CO}_{2}\right)$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Sn}: \mathrm{C}, 43.54 ; \mathrm{H}$, 6.45; Sn, 24.19. Found: C, 43.50; H, 6.62; Sn, 24.10\%.
3.2.3. $n-\mathrm{Pr}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CCH}=\mathrm{CHCOOH}\right)_{2}(3 \mathrm{c})$

Yield: $(0.27 \mathrm{~g}, 46 \%)$, m.p. $135-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 6.38(\mathrm{~s}, 4 \mathrm{H}, \quad \mathrm{CH}=\mathrm{CH}), 1.77(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 1.04\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 130 \quad(\mathrm{CH}=\mathrm{CH}), 30.1 \quad\left(\mathrm{C}_{1}\right), 17.4 \quad\left(\mathrm{C}_{2}\right.$, $\left.{ }^{2} J\left({ }^{13} \mathrm{C}-{ }^{119} \mathrm{Sn}\right)=31 \mathrm{~Hz}\right), 16.9\left(\mathrm{C}_{3},{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{119} \mathrm{Sn}\right)=117\right.$ $\mathrm{Hz}), 169.0(\mathrm{C}=\mathrm{O}) \mathrm{ppm} .{ }^{119} \mathrm{Sn}-\mathrm{NMR} \delta-148.9 \mathrm{ppm}$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3050(v \mathrm{OH}), 1587,1508\left(v_{\mathrm{a}} \mathrm{CO}_{2}\right), 1240$ $\left(v_{\mathrm{s}} \mathrm{CO}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{8} \mathrm{Sn}: \mathrm{C}, 38.53 ; \mathrm{H}, 4.58$; $\mathrm{Sn}, 27.52$. Found: C, 39.10 ; H, 5.05 ; $\mathrm{Sn}, 26.48 \%$.

### 3.2.4. $n-\mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CCH}=\mathrm{CHCOOH}\right)_{2}(3 \boldsymbol{d})$

Yield: $(0.31 \mathrm{~g}, 43 \%)$, m.p. $146-148{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 6.33(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 1.70(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 0.91 (t, 6H, $\left.\quad \operatorname{sn}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right) \quad \mathrm{ppm} . \quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \quad \delta \quad 129.6 \quad(\mathrm{CH}=\mathrm{CH}), \quad 25.8 \quad\left(\mathrm{C}_{1}\right.$, $\left.{ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{119} \mathrm{Sn}\right)=551 \mathrm{~Hz}\right), 25.7\left(\mathrm{C}_{2},{ }^{2} J\left({ }^{13} \mathrm{C}-{ }^{119} \mathrm{Sn}\right)=29\right.$ $\mathrm{Hz}), 26.5\left(\mathrm{C}_{3},{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{119} \mathrm{Sn}\right)=99 \mathrm{~Hz}\right), 13.5\left(\mathrm{C}_{4}\right), 169.0$ $(\mathrm{C}=\mathrm{O})$ ppm. ${ }^{119} \mathrm{Sn}-\mathrm{NMR} \delta-140.7 \mathrm{ppm}$. IR ( KBr , $\left.\mathrm{cm}^{-1}\right): 3050(\nu \mathrm{OH}), 1585,1505\left(v_{\mathrm{a}} \mathrm{CO}_{2}\right), 1239\left(v_{\mathrm{s}} \mathrm{CO}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{8} \mathrm{Sn}: \mathrm{C}, 41.37 ; \mathrm{H}, 5.17$; Sn , 25.86. Found: C, 41.12; H, 5.15; Sn, $25.40 \%$.

### 3.3. Preparation of $\mathrm{R}_{6} \mathrm{Sn}_{3}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)_{3}\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{3}$ ( $5 \boldsymbol{a}$ and $5 \boldsymbol{b}$ )

To a stirred solution of $n-\mathrm{Pr}_{2} \mathrm{Sn}(\mathrm{OMe}) \mathrm{OSO}_{2} \mathrm{Me}(0.45$ $\mathrm{g}, 1.35 \mathrm{mmol}) / n-\mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{OMe}) \mathrm{OSO}_{2} \mathrm{Me}(0.62 \mathrm{~g}, 1.72$ mmol ) in dry acetonitrile ( $\sim 50 \mathrm{ml}$ ) was added pyri-dine-2-carboxylic acid $(0.16 \mathrm{~g}, 1.35 \mathrm{mmol}) /(0.21 \mathrm{~g}, 1.72$ mmol ). After $10-12 \mathrm{~h}$, the clear solution was concentrated and $n$-hexane was added. Compounds $\mathbf{5 a}$ and $\mathbf{5 b}$ were isolated as white solids. These compounds were also obtained from analogous reactions of (hydroxy)di-$n$-propyl/n-butyltin methanesulfonate with pyridine-2carboxylic acid under similar conditions as above.

### 3.3.1. $n-\mathrm{Pr}_{6} \mathrm{Sn}_{3}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)_{3}\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{3}(\mathbf{5 a})$

Yield: $(0.50 \mathrm{~g}, 81 \%),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[7.79(\mathrm{t}$, $1 \mathrm{H}), 8.15(\mathrm{t}, 1 \mathrm{H}), 8.46(\mathrm{~d}, 1 \mathrm{H}), 9.25(\mathrm{br}, \mathrm{s}, 1 \mathrm{H})$ pyridine ring protons], $2.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SMe}), 1.70(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{SnCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ ), $1.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{SnCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.75$ (t, 6H Sn $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right)$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ [126.2, 128.4, 141.3, 147.0, 148.0 (pyridine ring carbons)], 39.8 (SMe), $32.3\left(\mathrm{C}_{1}\right), 18.8\left(\mathrm{C}_{2}\right), 17.5\left(\mathrm{C}_{3}\right.$, $\left.{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{119} \mathrm{Sn}\right)=169 \mathrm{~Hz}\right), 166.5(\mathrm{C}=\mathrm{O}) \quad \mathrm{ppm} .{ }^{119} \mathrm{Sn}-$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-210,-346,-421 \mathrm{ppm}$. FAB mass [( $m$-nitrobenzyl alcohol): [ $\mathrm{M}^{+}$, 1269]], $m / z 1077$ $\left[\mathrm{M}-2 \mathrm{OSO}_{2} \mathrm{Me}-2 \mathrm{H}\right]^{+}, 776 \quad\left[\mathrm{M}-\mathrm{Pr}_{2} \mathrm{Sn}\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{3}-\right.$ $2 \mathrm{H}]^{+}, 690\left[\mathrm{M}-\mathrm{Pr}_{2} \mathrm{Sn}\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{3}-2 \mathrm{Pr}-2 \mathrm{H}\right]^{+}, 407$ $\left[\mathrm{PrSn}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)_{2}\right]^{+}$and $328 \quad\left[\mathrm{PrSn}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-\right.\right.$ $2)]^{+}$. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $1676\left(v_{\mathrm{a}} \mathrm{CO}_{2}\right), 1296\left(v_{\mathrm{s}} \mathrm{CO}_{2}\right)$, 1240, 1148, $1046\left(v \mathrm{SO}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{63} \mathrm{~N}_{3} \mathrm{O}_{15} \mathrm{~S}_{3} \mathrm{Sn}_{3}: \mathrm{C}, 36.87$; H, 4.96; N, 3.30; S, 7.56;

Sn, 28.36. Found: C, 36.50; H, 5.05; N, 3.15; S, 7.31; Sn, $27.72 \%$.
3.3.2. $n-\mathrm{Bu}_{6} \mathrm{Sn}_{3}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)_{3}\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{3}(5 \boldsymbol{b})$

Yield: $(0.62 \mathrm{~g}, 75 \%),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[7.89(\mathrm{t}$, $1 \mathrm{H}), 8.27(\mathrm{t}, 1 \mathrm{H}), 8.54(\mathrm{~d}, 1 \mathrm{H}), 9.3(\mathrm{br}, \mathrm{s}, 1 \mathrm{H})$ pyridine ring protons], $2.99(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SMe}), 1.85(\mathrm{~m}, ~ 8 \mathrm{H}$, $\left.\mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.39\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.75\left(6 \mathrm{H}, \mathrm{t}, \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ [125.9, 128.2, 141.4, 146.0, 147.5 (pyridine ring carbons)], $39.8(\mathrm{SMe}), 32.5\left(\mathrm{C}_{1}\right), 27.1\left(\mathrm{C}_{2},{ }^{2} J\left({ }^{13} \mathrm{C}-{ }^{119} \mathrm{Sn}\right)=\right.$ $38 \mathrm{~Hz}), 25.8\left(\mathrm{C}_{3},{ }^{3} J\left({ }^{13} \mathrm{C}^{-119} \mathrm{Sn}\right)=159 \mathrm{~Hz}\right), 13.3\left(\mathrm{C}_{4}\right)$ ppm. ${ }^{119} \mathrm{Sn}$-NMR $\left(\mathrm{CDCl}_{3}\right): \delta-216,-346,-418 \mathrm{ppm}$. FAB mass [( $m$-nitrobenzyl alcohol): ( $\mathrm{M}^{+}$, 1353)], $\mathrm{m} / \mathrm{z} \quad 1161\left[\mathrm{M}-2 \mathrm{OSO}_{2} \mathrm{Me}-2 \mathrm{H}\right]^{+}, 832 \quad\left[\mathrm{M}-\mathrm{Bu}_{2} \mathrm{Sn}-\right.$ $\left.\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{3}-2 \mathrm{H}\right]^{+}, \quad 718 \quad\left[\mathrm{M}-\mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{OSO}_{2} \mathrm{Me}\right)_{3}-\right.$ $2 \mathrm{Bu}-2 \mathrm{H}]^{+}, 421\left[\mathrm{BuSn}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)_{2}\right]^{+}, 356[\mathrm{BuS}-$ $\left.\mathrm{n}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)\right]^{+}$. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $1680\left(\mathrm{v}_{\mathrm{a}} \mathrm{CO}_{2}\right)$, $1295\left(v_{\mathrm{s}} \mathrm{CO}_{2}\right), 1260,1146,1046\left(v \mathrm{SO}_{3}\right)$. Anal Calcd. for $\mathrm{C}_{45} \mathrm{H}_{75} \mathrm{~N}_{3} \mathrm{O}_{15} \mathrm{~S}_{3} \mathrm{Sn}_{3}$ : C, 39.91; H, 5.54; N, 3.10; S, 7.09 ; Sn, 26.60. Found: C, 39.51; H, 5.38; N, 3.05; S, 6.91; Sn, 25.92\%.

### 3.4. X-ray crystallography

The crystals of $\mathbf{3 b}, \mathbf{4 b}$ and $\mathbf{5 b}$ were mounted along with the largest dimension in sealed capillaries and were used for data collection. The intensity data for $\mathbf{3 b}$ were collected on Rigaku AFC6R diffractometer equipped with a copper rotating anode and a highly oriented graphite monochromator at $23{ }^{\circ} \mathrm{C}$. Rigaku AFC8 coupled with mercury-CCD detector (for $\mathbf{4 b}$ ) and Bruker SMART APEX diffractometers (for 5b) equipped with molybdenum sealed tube and a highly oriented graphite monochromator were used for data collection at $-100{ }^{\circ} \mathrm{C}$. All calculations were done on an IBM compatible PC using programs texan [19], Crystal Clear [20], shelxl-97 [21], and smart (VER 5.624) [22]. For compound 3b, the systematic absences ( $h k l, h+$ $k+l=2 n+1$; and $0 k 0, k=2 n+1$ ) indicated a choice between the space group $C 2$ and $C 2 / c$. The latter space group was chosen and later confirmed by successful refinement of the structure. The structure was solved by Patterson method. No systematic absences were observed in $\mathbf{4 b}$. The structure was solved by direct method using shelxl-97. The crystals of $\mathbf{5 b}$ crystallizes as solvates. Asymmetric unit content: $\mathbf{5 b} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Et}_{2} \mathrm{O}$. The systematic absences $(0 k 0, k=2 n+1$; and $h 0 l$, $l=2 n+1$ ) for $\mathbf{5 b} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Et}_{2} \mathrm{O}$ indicated the space group $P 2_{1} / c$. The structure was solved by direct methods using shelxtl-pc. There appears to be considerable disorder on two $n$-butyl groups bonded to $\mathrm{Sn}(3)$. Two separate positions for the carbon atoms of these butyl groups were therefore refined. The atoms C38 to C41 were found with exact 0.5 occupancy (occupancy values $0.494(11)$ and $0.506(11)$ ). The lattice also contains
disordered solvent ether and a water molecule. In each case, all non-hydrogen atoms were refined anisotropically by the full-matrix least-squares method. The function minimized was $\Sigma w\left(\left\|F_{0}\right\|-\left\|F_{\mathrm{c}}\right\|^{2}\right)$. Hydrogen atoms were included in the ideal position with fixed isotropic $U$-values. A weighting scheme of the form $w=$ $1 /\left[\sigma^{2}\left(F_{0}\right)^{2}+(a P)^{2}+b P\right]$ with $a=0.141, b=20.86$ (for 3b), $a=0.1176, b=3.123$ (for 4b) and $a=0.0552, b=$ 0.00 (for $\mathbf{5 b} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Et}_{2} \mathrm{O}$ ) was used. An extinction correction was also applied to the data. The refinement converged to the $R$ indices given in Table 1. The final difference map was devoid of significant features.

## 4. Supplementary material

Crystallographic data for the structural analysis (as.CIF format) have been deposited with the Cambridge Crystallographic Data Center, CCDC no. 198700 (for 3b), 198699 (for 4b) and 189370 (for $\mathbf{5 b} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot$ $\mathrm{Et}_{2} \mathrm{O}$ ). Copies of this information may be obtained from the Director, CCDC, 12 Union Road, Cambridge, CB21EZ, UK (Fax: +44-1233-336033; email: deposit@ ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

## Acknowledgements

M.K. is grateful to CSIR, New Delhi, India, for senior research fellowship.

## References

[1] (a) A.G. Davis, P.J. Smith, in: F.G.A. Stone, E.W. Able (Eds.), Comprehensive Organometallic Chemistry, vol. 2, Pergamon Press, New York, 1982, p. 610;
(b) C.J. Evans, S. Karpel, J. Organomet. Chem. Libr. 16 (1985) 1; (c) S. Patai, The Chemistry of Organic Germanium, Tin and Lead Compounds, Wiley/Interscience, Chichester, UK, 1995, p. 881;
(d) A.J. Crowe, Drugs Future 12 (1987) 255;
(e) M. Gielen, Coord. Appl. Organomet. Chem. 16 (2002) 481;
(f) M.J. Clarke, F. Zhu, D.R. Frasca, Chem. Rev. 99 (1999) 2511;
(g) M. Nath, S. Pokharia, R. Yadav, Coord. Chem. Rev. 215 (2001) 99.
[2] (a) L. Pellerito, L. Nagy, Coord. Chem. Rev. 224 (2002) 111;
(b) G. Arena, A. Gianguzza, L. Pellerito, S. Musumeci, R. Purrello, E. Rizzarelli, J. Chem. Soc. Dalton Trans. (1990) 2603.; (c) G. Arena, R. Cali, A. Contino, A. Musumeci, S. Musumeci, R. Purrello, Inorg. Chim. Acta 237 (1990) 187.
[3] R.C. Poller, The Chemistry of Organotin Compounds, Logos Press Ltd, 1970, p. 173.
[4] A.G. Davies, D.C. Kleinschmidt, P.R. Palan, S.C. Vasistha, J. Chem. Soc. C (1971).
[5] (a) E.R.T. Tiekink, Appl. Organomet. Chem. 5 (1991) 1;
(b) E.R.T. Tiekink, Trends Organomet. Chem. 1 (1994) 71.
[6] (a) T.M. Andrews, F.A. Bower, B.R. LaLiberte, J.C. Montermoso, J. Am. Chem. Soc. 80 (1958) 4102;
(b) J.H. Wengrovius, M.F. Garbauskas, Organometallics 11 (1992) 1334;
(c) H. Preut, F. Huber, M. Gielen, Acta Crystallogr. C 46 (1990) 2071.
[7] (a) M. Gielen, E. Joosen, T. Mancilla, K. Jurkschat, R. Willem, C. Roobol, J. Bernheim, G. Atassi, F. Huber, E. Hoffmann, H. Preut, B. Mahieu, Main Group Met. Chem. 10 (1987) 147;
(b) F. Huber, H. Preut, E. Hoffmann, M. Gielen, Acta Crystallogr. C 45 (1989) 51;
(c) M. Gielen, M. Acheddad, E.R.T. Tiekink, Main Group Met. Chem. 16 (1993) 367.
[8] (a) R. Willem, M. Biesemans, M. Boualam, A. Delmotte, A.E.I. Khloufi, M. Gielen, Appl. Organomet. Chem. 7 (1993) 311;
(b) S.W. Ng, V.G. Kumar Das, J. Holecek, A. Lycka, M. Gielen, M.G.B. Drew, Appl. Organomet. Chem. 11 (1997) 39.
[9] S.P. Narula, S. Kaur, R. Shankar, S. Verma, P. Venugopalan, S.K. Sharma, Inorg. Chem. 38 (1999) 4777.
[10] J. Holecek, M. Nadvornik, K. Handlir, J. Organomet. Chem. 315 (1986) 299.
[11] (a) T.P. Lockhart, J.C. Calabrese, F. Davidson, Organometallics 6 (1987) 2479;
(b) V. Chandrashekhar, R.O. Day, J.M. Holmes, R.R. Holmes, Inorg. Chem. 27 (1988) 958;
(c) M.F. Garbauskas, J.H. Wengrovius, Acta Crystallogr. C 47 (1991) 1969.
[12] J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principle of Structure and Reactivity, 4th ed., Harper Collins College Publishers, New York, 1993, p. 292.
[13] F.H. Allen, J.A. Lerbscher, J. Trotter, J. Chem. Soc. A (1971) 2507.
[14] M. Gielen, M. Boualam, E.R.T. Tiekink, Main Group Met. Chem. 16 (1993) 251.
[15] T.P. Lockhart, F. Davidson, Organometallics 6 (1987) 2471.
[16] (a) A.G. Davis, P.G. Harrison, J. Chem. Soc. C (1967) 298.;
(b) A.G. Davis, P.G. Harrison, J. Chem. Soc. C (1967) 1313.;
(c) K.P. Butin, V.N. Shishkin, I.P. Beletskaya, O.A. Reutov, J. Organomet. Chem. 93 (1975) 139.
[17] R.K. Ingham, S.D. Rosenberg, H. Gilman, Chem. Rev. 60 (1960) 459.
[18] A.I. Vogel, Textbook of Quantitative Chemical Analyses, 5th ed., Longman, London, 1989, p. 474.
[19] Texan: Structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, 1992.
[20] Crystal Clear: Data Collection Software, Rigaku Corporation, The Woodlands, TX, 1999.
[21] G.M. Sheldrick, shelx-97; Institute fur Anorganische Chemie, Universität Göttingen, Tammanstr. 4, D-37077, Göttingen, Germany, 1997.
[22] smart (Ver 5.624), Software for data collection on CCD detector system, Bruker X-ray Analytical Instruments, Madison, WI, 1995.


[^0]:    * Corresponding author. Tel.: +91-116-596454; fax: +91-116581102.

    E-mail address: shankar@netearth.iitd.ernet.in (R. Shankar).

